Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Eur J Cancer ; 159: 105-112, 2021 12.
Article in English | MEDLINE | ID: covidwho-1719647

ABSTRACT

PURPOSE: Initial findings in patients with cancer suggest a lower seroconversion to SARS-CoV-2 vaccination possibly related to myelo-immunosuppressive therapies. We conducted a prospective study to assess factors predicting poor seroconversion and adverse events following immunisation (AEFI) to the BNT162b2 vaccine in patients on active treatment. PATIENTS AND METHODS: Cancer patients, candidates to two doses of BNT162b2 SARS-CoV-2 vaccination, were enrolled. Patients on active surveillance served as controls. The primary endpoint was poor seroconversion (anti S1/S2 IgG < 25 AU/mL) after 21 days from the second dose. RESULTS: Between March and July 2021, 320 subjects were recruited, and 291 were assessable. The lack of seroconversion at 21 days from the second dose was 1.6% (95% CI, 0.4-8.7) on active surveillance, 13.9% (8.2-21.6) on chemotherapy, 11.4% (5.1-21.3) on hormone therapy, 21.7% (7.5-43.7) on targeted therapy and 4.8% (0.12-23.8) on immune-checkpoint-inhibitors (ICI). Compared to controls, the risk of no IgG response was greater for chemotherapy (p = 0.033), targeted therapy (0.005) and hormonotherapy (p = 0.051). Lymphocyte count < 1 × 109/L (p = 0.04) and older age (p = 0.03) also significantly predicted poor seroconversion. Overall, 43 patients (14.8%) complained of AEFI, mostly of mild grade. Risk of AEFI was greater in females (p = 0.001) and younger patients (p = 0.009). CONCLUSION: Chemotherapy, targeted therapy, hormone therapy, lymphocyte count < 1 × 109/L, and increasing age predict poor seroconversion after two doses of BNT162b2 in up to 20% of patients, indicating the need for a third dose and long-term serological testing in non-responders. AEFI occur much more frequently in women and younger subjects who may benefit from preventive medications. CLINICALTRIALS. GOV IDENTIFIER: NCT04932863.


Subject(s)
Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , Immunogenicity, Vaccine , Neoplasms/therapy , SARS-CoV-2/immunology , Vaccination , Vaccine Efficacy , Aged , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/immunology , Prospective Studies , Risk Factors , SARS-CoV-2/pathogenicity , Seroconversion , Time Factors , Treatment Outcome , Vaccination/adverse effects
2.
Cells ; 10(4)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1408630

ABSTRACT

Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous "camouflage" in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages' ontogeny in macrophages' functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs' origins may help understand the classification of TAMs' population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.


Subject(s)
Embryo, Mammalian/pathology , Neoplasms/pathology , Neoplasms/prevention & control , Tumor-Associated Macrophages/pathology , Glucose/metabolism , Humans , Lipid Metabolism , Neoplasms/metabolism , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL